Chapter **Differential Equations**

Topic-1: Ordinary Differential Equations, Order & Degree of Differential Equations

1 MCQs with One Correct Answer

If $x^2 + y^2 = 1$, then

- (a) $yy'' 2(y')^2 + 1 = 0$
- (b) $yy'' + (y')^2 + 1 = 0$
- (c) $yy'' + (y')^2 1 = 0$ (d) $yy'' + 2(y')^2 + 1 = 0$

6 MCQs with One or More than One Correct Answer

Consider the family of all circles whose centers lie on the straight line y = x. If this family of circle is represented by the differential equation Py'' + Qy' + 1 = 0, where P, Q are

functions of x, y and y' here $y' = \frac{dy}{dx}$, $y'' = \frac{d^2y}{dx^2}$, then which of the following statements is (are) true? [Adv. 2015] [Adv. 2015] 6. A normal is drawn at a point x-axis at Q. If PQ is of containing the following statements is (are) true? [Adv. 2015] 6. A normal is drawn at a point x-axis at Q. If PQ is of containing the following statements is (are) true?

- (c) $P+Q=1-x+y+y'+(y')^2$ (d) $P-Q=x+y-y'-(y')^2$
- A curve passes through the point $\left(1, \frac{\pi}{6}\right)$. Let the slope of the curve at each point (x, y) be $\frac{y}{x} + \sec\left(\frac{y}{x}\right), x > 0$. Then the equation of the curve is [Adv
 - (a) $\sin\left(\frac{y}{x}\right) = \log x + \frac{1}{2}$ (b) $\csc\left(\frac{y}{x}\right) = \log x + 2$

- (c) $\sec\left(\frac{2y}{x}\right) = \log x + 2$ (d) $\cos\left(\frac{2y}{x}\right) = \log x + \frac{1}{2}$ 4. The differential equation representing the family of curves
- $y^2 = 2c(x + \sqrt{c})$, where c is a positive parameter, is of
- (a) order 1 (b) order 2 (c) degree 3 (d) degree 4 The order of the differential equation whose general solution is given by

 $y = (c_1 + c_2) \cos(x + c_3) - c_4 e^{x + c_5}$, where c_1, c_2, c_3, c_4, c_5 , are arbitrary constants, is [1998 – 2 Marks]

A normal is drawn at a point P(x, y) of a curve. It meets the x-axis at Q. If PQ is of constant length k, then show that the differential equation describing such curves is

$$y\frac{dy}{dx} = \pm \sqrt{k^2 - y^2}$$
 [1994 – 5 Marks]

Find the equation of such a curve passing through (0, k).

7. If $(a+bx) e^{y/x} = x$, then prove that $x^3 \frac{d^2y}{dx^2} = \left(x \frac{dy}{dx} - y\right)^2$ [1983 - 3 Marks]

Topic-2: General & Particular Solution of Differential Equation

MCQs with One Correct Answer

- If y = y(x) satisfies the differential equation $8\sqrt{x}\left(\sqrt{9+\sqrt{x}}\right)dy = \left(\sqrt{4+\sqrt{9+\sqrt{x}}}\right)^{-1} dx, x > 0$ and $y(0) = \sqrt{7}$, then y(256) = [Adv. 2018]
- (a) 3 (b) 9 (c) 16
- The differential equation $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y}$ determines a family of circles with
 - (a) variable radii and a fixed centre at (0, 1)
 - (b) variable radii and a fixed centre at (0, -1)
 - (c) fixed radius 1 and variable centres along the x-axis.
 - (d) fixed radius 1 and variable centres along the y-axis.

- For the primitive integral equation $vdx + v^2dy = x dy$; $x \in R, y > 0, y = y(x), y(1) = 1$, then y(-3) is (b) 2 (c) 1
- The solution of primitive integral equation $(x^2 + y^2) dy = xy$ dx is y = y(x). If y(1) = 1 and $(x_0) = e$, then x_0 is equal to

 - (a) $\sqrt{2(e^2-1)}$ (b) $\sqrt{2(e^2+1)}$
 - (c) $\sqrt{3} e$
- (d) $\sqrt{\frac{e^2+1}{2}}$
- If y = y(x) and it follows the relation $x \cos y + y \cos x =$ π then y''(0) =[2005S]
- (b) -1
- (c) $\pi 1$ (d) $-\pi$
- If y = y(x) and $\frac{2 + \sin x}{y + 1} \left(\frac{dy}{dx} \right) = -\cos x$, y(0) = 1,
 - then $y\left(\frac{\pi}{2}\right)$ equals

[20048]

- (b) 2/3 (c) -1/3
- If y(t) is a solution of $(1+t)\frac{dy}{dt} ty = 1$ and y(0) = -1, then v(1) is equal to
 - (a) -1/2
- (b) e + 1/2
- (c) e 1/2
- A solution of the differential equation [1999 2 Marks]

$$\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + y = 0$$
 is

- (a) y = 2
- (c) y = 2x 4
- (d) $y = 2x^2 4$

Integer Value Answer/Non-Negative Integer

- If y(x) is the solution of the differential equation $xdy - (y^2 - 4y)dx = 0$ for x > 0, y(1) = 2, and the slope of the curve y = y(x) is never zero, then the value of 10 $y(\sqrt{2})$ is [Adv. 2022]
- 10. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with f(0) = 1 and satisfying the equation

f(x+y) = f(x)f'(y) + f'(x)f(y) for all $x, y \in \mathbb{R}$ Then, the value of $\log_e(f(4))$ is _____. [Adv. 2018]

3 Numeric/New Stem Based Questions

11. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with f(0) = 0. If y = f(x) satisfies the differential equation

$$\frac{dy}{dx} = (2+5y)(5y-2),$$

then the value of $\lim_{x \to \infty} f(x)$ is _____.

MCQs with One or More than One Correct Answer

12. Let Γ denote a curve y = y(x) which is in the first quadrant and let the point (1, 0) lie on it. Let the tangent to Γ at a point P intersect the y-axis at Y_p . If PY_p has length 1 for each point P on Γ , then which of the following options

(a)
$$y = -\log_e \left(\frac{1 + \sqrt{1 - x^2}}{x} \right) + \sqrt{1 - x^2}$$

- (b) $xy' \sqrt{1-x^2} = 0$
- (c) $y = \log_e \left(\frac{1 + \sqrt{1 x^2}}{x} \right) \sqrt{1 x^2}$
- (d) $xy' + \sqrt{1-x^2} = 0$
- 13. A solution curve of the differential equation

$$(x^2 + xy + 4x + 2y + 4) \frac{dy}{dx} - y^2 = 0, x > 0$$
, passes through

the point (1, 3). Then the solution curve [Adv. 2016]

- (a) intersects y = x + 2 exactly at one point
- (b) intersects y = x + 2 exactly at two points
- (c) intersects $y = (x + 2)^2$
- (d) does NOT intersect $y = (x + 3)^2$
- 14. Let y(x) be a solution of the differential equation

 $(1+e^{x})y' + ye^{x} = 1$. If y(0) = 2, then which of the

following statement is (are) true? [Adv. 2015]

- (a) v(-4) = 0
- (b) y(-2) = 0
- (c) y(x) has a critical point in the interval (-1,0)
- (d) y(x) has no critical point in the interval (-1, 0)

Assertion and Reason / Statement Type Questions

Let a solution y = y(x) of the differential equation

$$x\sqrt{x^2 - 1} \, dy - y\sqrt{y^2 - 1} \, dx = 0$$
 satisfy $y(2) = \frac{2}{\sqrt{3}}$.

STATEMENT-1: $y(x) = \sec\left(\sec^{-1} x - \frac{\pi}{6}\right)$ and STATEMENT-2: y(x) is given by $\frac{1}{y} = \frac{2\sqrt{3}}{x} - \sqrt{1 - \frac{1}{x^2}}$

(a) STATEMENT - 1 is True, STATEMENT - 2 is True; STATEMENT- 2 is a correct explanation for STATEMENT-1

- (b) STATEMENT 1 is True, STATEMENT 2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT - 1
- (c) STATEMENT 1 is True, STATEMENT 2 is False
- (d) STATEMENT 1 is False, STATEMENT 2 is True

10 Subjective Problems

- If length of tangent at any point on the curve y = f(x)intecepted between the point and the x-axis is of length 1. [2005-4 Marks] Find the equation of the curve.
- 17. A hemispherical tank of radius 2 metres is initially full of water and has an outlet of 12 cm2 cross-sectional area at the bottom. The outlet is opened at some instant. The flow through the outlet is according to the law $v(t) = 0.6 \sqrt{3gh(t)}$, where v(t) and h(t) are respectively the velocity of the flow through the outlet and the height of water level above the outlet at time t, and g is the acceleration due to gravity. Find the time it takes to empty the tank. (Hint: Form a differential equation by relating the decrease of water level to the [2001 - 10 Marks]
- A country has a food deficit of 10%. Its population grows continously at a rate of 3% per year. Its annual food production every year is 4% more than that of the last year. Assuming that the average food requirement per person remains constant, prove that the country will become self-sufficient in food after n years, where n is the

smallest integer bigger than or equal to $\frac{\ln 10 - \ln 9}{\ln (1.04) - 0.03}$

[2000 - 10 Marks]

A curve passing through the point (1, 1) has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of P from the x-axis. Determine the equation of the curve.

[1999 - 10 Marks]

Determine the equation of the curve passing through the 20. origin, in the form y = f(x), which satisfies the differential

equation
$$\frac{dy}{dx} = \sin(10x + 6y)$$
. [1996 – 5 Marks]

outflow).

Topic-3: Linear Differential Equation of First Order

1 MCQs with One Correct Answer

- Let $f:[1,\infty)\to\mathbb{R}$ be a differentiable function such that $f(1) = \frac{1}{3}$ and $3 \int_{1}^{x} f(t) dt = x f(x) - \frac{x^{3}}{3}, x \in [1, \infty)$ Let e denote the base of the natural logarithm. Then the value off(e) is
- (b) $\frac{\log_e 4 + e}{3}$

- (c) $\frac{4e^2}{3}$ (d) $\frac{e^2 4}{3}$ The function y = f(x) is the solution of the differential equation
 - $\frac{dy}{dx} + \frac{xy}{x^2 1} = \frac{x^4 + 2x}{\sqrt{1 x^2}}$ in (-1, 1) satisfying f(0) = 0.

Then $\int_{-\sqrt{3}}^{\frac{\sqrt{3}}{2}} f(x)d(x)$ is [Adv. 2014]

- (a) $\frac{\pi}{3} \frac{\sqrt{3}}{2}$ (b) $\frac{\pi}{3} \frac{\sqrt{3}}{4}$

- Integer Value Answer/Non-Negative Integer
- For $x \in \mathbb{R}$, let y(x) be a solution of the differential equation 3. $(x^2 - 5)\frac{dy}{dx} - 2xy = -2x(x^2 - 5)^2$ such that y(2) = 7.

Then the maximum value of the function y(x) is [Adv. 20231

- Let y'(x) + y(x) g'(x) = g(x) g'(x), $y(0) = 0, x \in \mathbb{R}$, where f f'(x) denotes $\frac{df(x)}{dx}$ and g(x) is a given non-constant differentiable function on R with g(0) = g(2) = 0. Then the value of y(2) is
- MCQs with One or More than One Correct Answer
- For $x \in \mathbb{R}$, let the function y(x) be the solution of the

differential equation $\frac{dy}{dx} + 12y = \cos\left(\frac{\pi}{12}x\right)$, y(0) = 0

Then, which of the following statements is/are TRUE?

- (a) y(x) is an increasing function (b) y(x) is a decreasing function
- (c) There exists a real number β such that the line $y = \beta$ intersects the curve y = y(x) at infinitely many points
- (d) y(x) is a periodic function
- For any real numbers α and β , let $y_{\alpha, \beta}(x), x \in \mathbb{R}$, be the solution of the differential equation

$$\frac{dy}{dx} + \alpha y = xe^{\beta x}, y(1) = 1$$

[Adv. 2022]

Let $S = \{y_{\alpha, \beta}(x) : \alpha, \beta \in \mathbb{R} \}$. Then which of the following functions belong(s) to the set S? [Adv. 2021]

- (a) $f(x) = \frac{x^2}{2}e^{-x} + \left(e \frac{1}{2}\right)e^{-x}$
- (b) $f(x) = -\frac{x^2}{2}e^{-x} + \left(e + \frac{1}{2}\right)e^{-x}$
 - (c) $f(x) = \frac{e^x}{2} \left(x \frac{1}{2} \right) + \left(e \frac{e^2}{2} \right) e^{-x}$
- (d) $f(x) = \frac{e^x}{2} \left(\frac{1}{2} x \right) + \left(e + \frac{e^2}{2} \right) e^{-x}$
- 7. Let $f:[0,\infty)\to\mathbb{R}$ be a continuous function such that

$$f(x) = 1 - 2x + \int_0^x e^{x-t} f(t) dt$$

for all $x \in [0, \infty)$. Then, which of the following statement (s) is (are) TRUE? [Adv. 2018]

- (a) The curve y = f(x) passes through the point (1, 2)
- (b) The curve y = f(x) passes through the point (2, -1)
- (c) The area of the region

$$\left\{ (x,y) \in [0,1] \times \mathbb{R} : f(x) \le y \le \sqrt{1-x^2} \right\} \text{ is } \frac{\pi-2}{4}$$
(d) The area of the region

$$\{(x,y)\}\in[0,1]\times\mathbb{R}: f(x) \le y \le \sqrt{1-x^2}$$
 is $\frac{\pi-1}{4}$

Let $f:(0,\infty)\to\mathbb{R}$ be a differentiable function such that $f'(x) = 2 - \frac{f(x)}{x}$ for all $x \in (0, \infty)$ and $f(1) \ne 1$. Then [Adv. 2016]

- (a) $\lim_{x \to 0+} f'\left(\frac{1}{x}\right) = 1$
- (b) $\lim_{x\to 0+} xf\left(\frac{1}{x}\right) = 2$
- (d) $|f(x)| \le 2$ for all $x \in (0, 2)$
- If y(x) satisfies the differential equation $y' - y \tan x = 2x \sec x$ and y(0) = 0, then
 - (a) $y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{8\sqrt{2}}$ (b) $y'\left(\frac{\pi}{4}\right) = \frac{\pi^2}{18}$
- (d) $y'\left(\frac{\pi}{3}\right) = \frac{4\pi}{3} + \frac{2\pi^2}{3\sqrt{3}}$

Match the Following

Match the following: Column I

[2006 - 6M] Column II

- (p) 1

 $|\cos x \cot x - \log(\sin x)^{\sin x}| dx$

- (B) Area bounded by $-4v^2 = x$ and $x - 1 = -5v^2$
- (q) 0
- (C) Cosine of the angle of intersection of curves $y = 3^{x-1} \log x$ and $y = x^x - 1$ is
- (r) 6 ln 2
- (D) Let $\frac{dy}{dx} = \frac{6}{x+y}$ where
- (s)

y(0) = 0 then value of y when x + y = 6 is

Answer Key

Topic-1: Ordinary Differential Equations, Order & Degree of Differential Equations

- 1. (b)
- 2. (b,c)
- 3. (a)
- 4. (a,c) 5. (c)

Topic-2: General & Particular Solution of Differential Equation

- (c)
- 3. (a)
- 4. (c)
- 5. (c)
- 6. (a)
- 8. (c)
- 9. (8)

- 11. (0.4)
- 12. (c,d)

- 13. (a,d) 14. (a,c) 15. (c)
- Topic-3: Linear Differential Equation of First Order

- 2. (b)
 - 3. (16)

- 6. (a,c) 7. (b,c)
- 9. (a, d)

10. (A) \rightarrow p, (B) \rightarrow s, (C) \rightarrow p, (D)

Hints & Solutions

Topic-1: Ordinary Differential Equations, Order & Degree of Differential Equations

- (b) Given $x^2 + y^2 = 1$. Differentiating w.r.t. x, we get Again differentiating w.r.t. x, $1 + (y')^2 + yy'' = 0$
- (b, c) Let the equation of circle be $x^{2} + y^{2} + 2gx + 2gy + c = 0$ $\Rightarrow 2x + 2yy' + 2g + 2gy' = 0$ $\Rightarrow x + yy' + g + gy' = 0$ On differentiating again, we get

$$1 + yy'' + (y')^2 + gy'' = 0 \Rightarrow g = -\left[\frac{1 + (y')^2 + yy''}{y''}\right]$$

On substituting the value of g in eqn. (i), we get

$$x + yy' - \frac{1 + (y')^2 + yy''}{y''} - \left(\frac{1 + (y')^2 + yy''}{y''}\right)y' = 0$$

- $\Rightarrow xy'' + yy'y'' 1 (y')^2 yy'' y' (y')^3 yy'y'' = 0$
- $\Rightarrow (x-y)y'' y'(1+y'+(y')^2) = 1$ $\Rightarrow (y-x)y'' + [1+y'+(y')^2]y' + 1 = 0$ $\therefore Py'' + Qy' + 1 = 0$ $\therefore P = y x, Q = 1 + y' + (y')^2$ Hence, $P + Q = 1 x + y + y' + (y')^2$

3. (a)
$$\frac{dy}{dx} = \frac{y}{x} + \sec \frac{y}{x}$$

Put
$$y = vx$$
, $\therefore \frac{dy}{dx} = v + x \frac{dv}{dx}$

- $\Rightarrow x \frac{dv}{dx} = \sec v \Rightarrow \int \cos v \, dv = \int \frac{dx}{x}$
- $\Rightarrow \sin v = \log x + c$
- $\Rightarrow \sin \frac{y}{x} = \log x + c$

Since, it passes through $\left(1, \frac{\pi}{6}\right) \Rightarrow c = \frac{1}{2}$

- Hence, $\sin \frac{y}{x} = \log x + \frac{1}{2}$
- **4.** (a, c) $y^2 = 2c(x + \sqrt{c}) \Rightarrow 2yy_1 = 2c \Rightarrow c = yy_1$ Eliminating c, we get

$$y^2 = 2yy_1(x + \sqrt{yy_1}) \text{ or } (y - 2xy_1)^2 = 4yy_1^3$$

It involves only Ist order derivative, its order is 1 but its degree is 3 as y_1^3 is there.

(c) The given solution of differential equation is

$$y = (c_1 + c_2)\cos(x + c_3) - c_4e^{x + c_5}$$

$$= (c_1 + c_2)\cos(x + c_3) - c_4 e^{c_5} e^x$$

= $A\cos(x + c_3) - Be^x$

[Here,
$$c_1 + c_2 = A, c_4 e^{c_5} = B$$
]

Hence in the solution there are actually three arbitrary constants and hence this differential equation should be

The length of normla PQ to any curve

$$\Rightarrow y \frac{dy}{dx} = \pm \sqrt{k^2 - y^2}$$

which is the required differential equation of given curve. On solving this D.E., we get the Eqn. of curve as follows

$$\int \frac{ydy}{\sqrt{k^2 - y^2}} = \int \pm dx \implies -\frac{1}{2} \cdot 2\sqrt{k^2 - y^2} = \pm x + c$$

$$-\sqrt{k^2 - y^2} = \pm x + c$$

Since, it passes through (0, k), we get c = 0

:. Equation of curve is

$$-\sqrt{k^2 - y^2} = \pm x \implies x^2 + y^2 = k^2$$

 $(a+bx)e^{\frac{y}{x}} = x$

$$\Rightarrow e^{\frac{y}{x}} = \frac{x}{a + bx} \qquad \dots (i)$$

$$\frac{y}{e^x} \left[(x) \frac{dy}{dx} - y \right] = \frac{a + bx - bx}{(a + bx)^2}$$

$$\Rightarrow \left(x\frac{dy}{dx} - y\right)e^{\frac{y}{x}} = \frac{ax^2}{\left(a + bx\right)^2} \qquad ...(ii)$$

$$\left(x\frac{dy}{dx} - y\right) = \frac{ax}{a + bx}$$
...(iii)

Differentiating (iii) w. r. to x, we get

$$x\frac{d^2y}{dx^2} + \frac{dy}{dx} - \frac{dy}{dx} = \frac{(a+bx)a - axb}{(a+bx)^2}$$

$$\Rightarrow x\frac{d^2y}{dx^2} = \frac{a^2}{(a+bx)^2}$$

 $\Rightarrow x^3 \frac{d^2 y}{dx^2} = \left(\frac{ax}{a+bx}\right)^2$...(iv)

$$x^3 \frac{d^2 y}{dx^2} = \left(x \frac{dy}{dx} - y\right)^2$$

Topic-2: General & Particular Solution of Differential Equation

(a) Given differential equation can be written as

$$\int dy = \int \frac{1}{\left(\sqrt{4 + \sqrt{9 + \sqrt{x}}}\right)\left(\sqrt{9 + \sqrt{x}}\right)8\sqrt{x}} dx$$

Putting $\sqrt{4 + \sqrt{9 + \sqrt{x}}} = t$, we get $\frac{1}{2\sqrt{4+\sqrt{9+\sqrt{x}\cdot2\sqrt{9+\sqrt{x}\cdot2\sqrt{y}}}}} dx = dt$

$$\therefore \int dy = \int dt \implies y = t + c$$

$$\Rightarrow y = \sqrt{4 + \sqrt{9 + \sqrt{x}}} + c$$
Now, $y(0) = \sqrt{7} \implies c = 0$

$$y = \sqrt{4 + \sqrt{9 + \sqrt{x}}} \implies y(256) = 3$$

2. (c) $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y} \implies \frac{-2y}{\sqrt{1-y^2}} dy + 2dx = 0$

$$\Rightarrow \sqrt{1-y^2} + x = c \Rightarrow (x-c)^2 + y^2 = 1$$

 $\Rightarrow \sqrt{1-y^2} + x = c \Rightarrow (x-c)^2 + y^2 = 1$ which is a circle of fixed radius 1 and variable centre (c, 0) lying on x-axis.

(a) $ydx + y^2 dy = x dy$; $x \in R$, y > 0, y(1) = 1

$$\Rightarrow \frac{ydx - xdy}{y^2} + dy = 0 \Rightarrow \frac{d}{dx} \left(\frac{x}{y} \right) + dy = 0$$

On integration, we get $\frac{x}{y} + y = c$

$$y(1) = 1 \implies c = 2, \therefore \frac{x}{y} + y = 2$$

Now to find y(-3), putting x = -3 in above equation, we get

$$-\frac{3}{y} + y = 2 \Rightarrow y^2 - 2y - 3 = 0 \Rightarrow y = 3, -1$$

\(\therefore\) \(y > 0\), \(\therefore\) \(y = 3\)

(c) The given differential equation is $(x^2 + y^2)dy = xy dx$ such that y(1) = 1 and $y(x_0) = e$

$$\Rightarrow \frac{dy}{dx} = \frac{xy}{x^2 + y^2}$$

Put y = vx, $\therefore v + x \frac{dv}{dx} = \frac{v}{1 + v^2}$

$$\Rightarrow x \frac{dv}{dx} = \frac{-v^3}{1+v^2} \Rightarrow \int \frac{1+v^2}{v^3} dv + \int \frac{dx}{x} = 0$$

$$\Rightarrow -\frac{1}{2v^2} + \log|v| + \log|x| = c$$

$$\Rightarrow \log y = c + \frac{x^2}{2y^2} \qquad (\because v = y/x)$$

Now, $y(1) = 1 \implies c = -\frac{1}{2}$, $\therefore \log y = \frac{x^2 - y^2}{2x^2}$

since $y(x_0) = e \implies \log e = \frac{x_0^2 - e^2}{x_0^2} \implies x_0 = \sqrt{3}e$

(c) Given that y = y(x)

and $x\cos y + y\cos x = \pi 7$...(i)

From eqn. (i), when x = 0 then $y = \pi$

On differentiating (i) with respect to x, we get

 $-x\sin y.y' + \cos y + y'\cos x - y\sin x = 0$

$$\Rightarrow y' = \frac{y \sin x - \cos y}{\cos x - x \sin y} \qquad \dots (ii)$$

$$\Rightarrow y'(0) = 1$$

(using $y(0) = \pi$)

Differentiating (ii) with respect to x, we get

$$(y'\sin x + y\cos x + \sin y.y')(\cos x - x\sin y)$$

$$y'' = \frac{-(-\sin x - \sin y - x\cos yy')(y\sin x - \cos y)}{(\cos x - x\sin y)^2}$$

$$\Rightarrow y''(0) = \frac{\pi(1) - 1}{1} = \pi - 1$$

6. (a) $\left(\frac{2+\sin x}{1+v}\right)\frac{dy}{dx} = -\cos x, y(0) = 1$

$$\Rightarrow \frac{dy}{(1+y)} = \frac{-\cos x}{2 + \sin x} dx$$

$$\Rightarrow \ln(1+y) = -\ln(2+\sin x) + c \qquad \dots (i)$$

Put x = 0 and $y = 1 \implies \ln 2 = -\ln 2 + c \implies c = \ln 4$

Put
$$x = \frac{\pi}{2}$$
 in eqn. (i), $\ln(1+y) = -\ln 3 + \ln 4 = \ln \frac{4}{3}$
 $\Rightarrow y = \frac{1}{3}$

7. **(a)**
$$\frac{dy}{dt} - \frac{t}{1+t}y = \frac{1}{1+t}$$

I.F.
$$= e^{-\int \frac{t}{1+t} dt} = e^{-\int \left(1 - \frac{1}{1+t}\right) dt} = e^{-(t - \log(1+t))}$$

$$=e^{-t}.e^{\log(1+t)}=(1+t)e^{-t}$$

$$y.e^{-t}(1+t) = \int \frac{1}{(1+t)}e^{-t}(1+t)dt + c$$

$$\Rightarrow y.e^{-t}(1+t) = -e^{-t} + c \Rightarrow y = -\frac{1}{1+t} + \frac{ce^t}{1+t}$$

$$y(0) = -1, \therefore c = 0$$

Hence,
$$y = -\frac{1}{1+t}$$
 \Rightarrow $y(1) = -\frac{1}{2}$
(c) Given differential equation is

$$\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + y = 0 \qquad ...(i)$$

(a)
$$y = 2 \Rightarrow \frac{dy}{dx} = 0$$

On putting in Eq. (i)

 $0^{2} - x(0) + y = 0$ $\Rightarrow y = 0 \text{ which is not satisfied.}$

(b)
$$y = 2x \Rightarrow \frac{dy}{dx} = 2$$

On putting in Eq. (i), $(2)^2 - x \cdot 2 + y = 0$

$$(2)^2 - x \cdot 2 + y = 0$$

 $\Rightarrow 4 - 2x + y = 0$

 \Rightarrow y = 2x which is not satisfied.

(c)
$$y = 2x - 4 \Rightarrow \frac{dy}{dx} = 2$$

On putting in Eq. (i) $(2)^2 - x - 2 + y$

$$4-2x+2x-4=0$$

y = 2x - 4 is satisfied. (d) $y = 2x^2 - 4$

(d)
$$v = 2x^2 - 4$$

$$\frac{dy}{dx} = 4x$$

On putting in Eq. (i),

$$(4x)^2 - x \cdot 4x + y = 0$$

 \Rightarrow y = 0 which is not satisfied.

(8) Given differential equation $x dy - (y^2 - 4y) dx = 0$

$$\frac{dy}{y^2 - 4y} = \frac{dx}{x}$$

$$\Rightarrow \frac{1}{4} \int \left(\frac{1}{v-4} - \frac{1}{v} \right) dy = \int \frac{dx}{x}$$

$$\Rightarrow \frac{1}{4} \ln \left| \frac{y-4}{y} \right| = \ln |x| + c$$

$$\Rightarrow$$
 Put $x = 1$ and $y = 2$ we get $c = 0$

$$\ln \left| \frac{y-4}{y} \right| = 4 \ln |x|$$

so,
$$\frac{y-4}{y} = \pm x^4$$
 or, $y = \frac{4}{1 \pm x^4}$

When $y = \frac{4}{1 - x^4}$ then y(1) is not define.

Take
$$y = \frac{4}{1+x^4} \implies y(\sqrt{2}) = \frac{4}{5}$$

So,
$$10y(\sqrt{2}) = 8$$

10. (2)
$$f(x+y) = f(x) f'(y) + f'(x) f(y)$$
 ...(i)
On putting $x = y = 0$, we get

$$f(0) = 2f'(0) f(0) \implies f'(0) = \frac{1}{2}$$
 [:: $f(0) = 1$]

On putting y = 0 in equation (i), we get f(x) = f(x) f'(0) + f'(x) f(0)

$$\Rightarrow$$
 $f'(x) = \frac{f(x)}{2}$ \Rightarrow $\int \frac{f'(x)}{f(x)} dx = \frac{1}{2} \int dx$

[:
$$f(0) = 1$$
 and $f'(0) = \frac{1}{2}$]

$$\Rightarrow \log_e f(x) = \frac{x}{2} + \log_e c$$

$$\Rightarrow f(x) = ce^{x/2} \Rightarrow f(x) = e^{x/2}$$
[:: $f(0) = 1$]

$$\Rightarrow$$
 f(x) = ce^{x/2} \Rightarrow f(x) = e^{x/2}

$$f: f(0) = 11$$

$$\Rightarrow \log_e(f(x)) = \frac{x}{2} \Rightarrow \log_e(f(4)) = 2$$

11. (0.4)
$$\frac{dy}{dx} = (5y+2)(5y-2) = 25\left(y+\frac{2}{5}\right)\left(y-\frac{2}{5}\right)$$

$$\Rightarrow \frac{1}{25} \int \frac{dy}{\left(y + \frac{2}{5}\right)\left(y - \frac{2}{5}\right)} = \int dx$$

$$\Rightarrow \frac{1}{25} \int \frac{5}{4} \left[\frac{1}{y - \frac{2}{5}} - \frac{1}{y + \frac{2}{5}} \right] dy = \int dx$$

$$\Rightarrow \frac{1}{25} \times \frac{5}{4} \ln \left| \frac{y - \frac{2}{5}}{y + \frac{2}{5}} \right| = x + c$$

$$\Rightarrow \frac{1}{20} \ln \left| \frac{5y-2}{5y+2} \right| = x + c$$

As,
$$f(0) = 0$$
 : $0 = 0 + c \implies c = 0$

Hence,
$$\left| \frac{5y-2}{5y+2} \right| = e^{20x}$$

$$\Rightarrow \lim_{x \to -\infty} \left| \frac{5 f(x) - 2}{5 f(x) + 2} \right| = \lim_{x \to -\infty} e^{20x} = e^{-\infty} = 0$$

$$\Rightarrow 5 \lim_{x \to -\infty} f(x) - 2 = 0 \Rightarrow \lim_{x \to -\infty} f(x) = \frac{2}{5} = 0.4$$

(c, d)

Tangent to the curve y = y(x) at point P(x, y) is given by Y - y = y'(x)(X - x)

It intersects y-axis at Y_p , putting x = 0 $Y - y = -xy'(x) \Rightarrow Y = y - xy'(x)$ $\therefore Y_p(0, y - xy'(x))$

Given $PY_p = 1 \Rightarrow \sqrt{(x-0)^2 + (y-y+xy'(x))^2} = 1$

 $[\because y = 2x - 4]$

$$\Rightarrow x^2 + x^2 (y'(x))^2 = 1 \Rightarrow y'(x) = \pm \frac{\sqrt{1 - x^2}}{x}$$

Now y = y(x) less in first quadrant and its tangent passes through (1, 0), therefore it has to be a decreasing function, so derivative should be negative

infinition, so derivative should be negative
$$\therefore y'(x) = \frac{-\sqrt{1-x^2}}{x} \qquad \left[\text{ or } xy'(x) + \sqrt{1-x^2} = 0 \right]$$

$$\Rightarrow y(x) = -\int \frac{\sqrt{1-x^2}}{x} dx$$
put $x = \sin \theta \Rightarrow dx = \cos \theta d\theta$

$$y = -\int \frac{\cos \theta}{\sin \theta} \cos \theta d\theta = -\int (\csc \theta - \sin \theta) d\theta$$

$$y = +\log \left| \frac{1+\sqrt{1-x^2}}{x} \right| - \sqrt{1-x^2} + c$$
for $x = 1$ and $y = 0$, we get $c = 0$

$$y = \ln\left(\frac{1+\sqrt{1-x^2}}{x}\right) - \sqrt{1-x^2}$$

∴ options (c) and (d) are correct.

13. (a, d)
$$[(x+2)(x+2+y)] \frac{dy}{dx} - y^2 = 0, \text{ Put } y = (x+2)t$$

$$\Rightarrow \frac{dy}{dx} = (x+2)\frac{dt}{dx} + t$$

$$(x+2)^2 = 0 \text{ or } (1+t)\left((x+2)\frac{dt}{dx} + t\right) - t^2 = 0$$

$$(x+2)(1+t)\frac{dt}{dx} + t = 0$$

$$\left(\frac{1+t}{t}\right)dt = -\frac{dx}{x+2}$$

$$\ln t + t = -\ln (x+2) + c$$

$$\Rightarrow \ln\left(\frac{y}{x+2}\right) + \left(\frac{y}{x+2}\right)$$

$$= -\ln (x+2) + c$$

$$\ln y - \ln (x+2) + \frac{y}{x+2} = -\ln (x+2) + c$$

$$\ln y + \frac{y}{x+2} = c$$

$$\ln 3 + 1 = c \Rightarrow \ln y + \frac{y}{x+2} = \ln 3e$$

$$(A) \ln y + \frac{y}{x+2} = \ln 3e = \ln (x+2) + 1 = \ln 3 + 1$$

$$\Rightarrow \text{ one solution}$$

(D)
$$y = (x+3)^2 \Rightarrow \ln(x+3)^2 + \frac{(x+3)^2}{x+2} = \ln 3 + 1$$

$$2\ln(x+3) + \frac{(x+2)^2 + 1 + 2(x+2)}{x+2} = \ln 3 + 1$$

$$g(x) = 2 \ln (x+3) + (x+2) + 2 + \frac{1}{(x+2)} - \ln 3 - 1$$

$$g(x) = \frac{2}{(x+3)} + 1 + 0 - \frac{1}{(x+2)^2} = \frac{2(x+2)^2 - (x+3)}{(x+3)(x+2)^2} + 1 > 0$$

Since x > 0 given and g(0) > 0, therefore g(x) will never intersect x-axis when x > 0.

14. (a, c)
$$\frac{dy}{dx} + \frac{e^x}{1 + e^x} y = \frac{1}{1 + e^x}$$

I.F. = 1 + e^x . Hence solution is

I.F. =
$$1 + e^x$$
. Hence solution is $y(1 + e^x) = x + c$

Now,
$$y(0) = 2 \Rightarrow c = 4$$
, $\therefore y = \frac{x+4}{e^x + 1} \Rightarrow y(-4) = 0$

Also
$$\frac{dy}{dx} = \frac{(e^x + 1) - e^x(x + 4)}{(e^x + 1)^2}$$

For critical point, put $\frac{dy}{dx} = 0$

$$\Rightarrow e^x(x+3) = 1 \Rightarrow x+3 = e^{-x}$$

Its solution will be intersection point of y = x + 3 and $y = e^{-x}$

Clearly there is a critical point in (-1, 0).

15. (c) The given differential equation is

$$x\sqrt{x^2 - 1} \frac{dy - y\sqrt{y^2 - 1}}{dy} dx = 0$$

$$\Rightarrow \int \frac{dy}{y\sqrt{y^2 - 1}} = \int \frac{dx}{x\sqrt{x^2 - 1}} \Rightarrow \sec^{-1} y = \sec^{-1} x + c$$

$$\Rightarrow y = \sec[\sec^{-1} x + c], \quad \therefore \quad y(2) = \frac{2}{\sqrt{3}}$$

$$\Rightarrow \frac{2}{\sqrt{3}} = \sec(\sec^{-1} 2 + c) \Rightarrow \sec^{-1} \frac{2}{\sqrt{3}} - \sec^{-1} 2 = c$$

$$\Rightarrow c = \frac{\pi}{6} - \frac{\pi}{3} = -\frac{\pi}{6}, \quad \therefore y = \sec\left[\sec^{-1}x - \frac{\pi}{6}\right]$$

Also
$$\frac{1}{y} = \cos\left[\cos^{-1}\frac{1}{x} - \frac{\pi}{6}\right]$$

$$= \cos\left(\cos^{-1}\frac{1}{x}\right)\cos\frac{\pi}{6} + \sin\left(\cos^{-1}\frac{1}{x}\right)\sin\frac{\pi}{6}$$

$$\Rightarrow \frac{1}{y} = \frac{\sqrt{3}}{2x} + \frac{1}{2}\sqrt{1 - \frac{1}{x^2}}$$

We know that length of tangent to curve y = f(x) is given by

$$\frac{1}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}} \frac{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}{\left(\frac{dy}{dx}\right)}$$

According to the question,

$$\left| \frac{y\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}{\left(\frac{dy}{dx}\right)} \right| = 1 \implies y^2 \left(1 + \left(\frac{dy}{dx}\right)^2\right) = \left(\frac{dy}{dx}\right)^2$$

$$\Rightarrow \left(\frac{dy}{dx}\right)^2 = \frac{y^2}{1 - y^2} \Rightarrow \frac{dy}{dx} = \pm \frac{y}{\sqrt{1 - y^2}}$$

$$\Rightarrow \int \frac{\sqrt{1-y^2}}{y} dy = \pm \int dx$$

Put $y = \sin \theta$ so that $dy = \cos \theta d\theta$

$$\therefore \int \frac{\cos \theta}{\sin \theta} \cos \theta \, d\theta = \pm x + c$$

$$\Rightarrow \int (\csc \theta - \sin \theta) d\theta = \pm x + c$$

$$\Rightarrow \log |\csc \theta - \cot \theta| + \cos \theta = \pm x + c$$

$$\Rightarrow \log \left| \frac{1 - \sqrt{1 - y^2}}{y} \right| + \sqrt{1 - y^2} = \pm x + c$$

17. Let the water level be at a height h after time t, and water level falls by dh in time dt and the corresponding volume of water gone out be dV.

$$\Rightarrow |dV| = |\pi r^2 dh|$$
 (:: dh is very small)

$$\Rightarrow \frac{dV}{dt} = -\pi r^2 \frac{dh}{dt} \qquad (\because \text{ as } t \text{ increases}, h \text{ decreases})$$

Now, velocity of water, $v = \frac{3}{5}\sqrt{2gh}$

Rate of flow of water = $Av(A = 12 \text{ cm}^2)$

$$\Rightarrow \frac{dV}{dt} = \left(\frac{3}{5}\sqrt{2gh}A\right) = -\pi r^2 \frac{dh}{dt}$$

Also from figure,

$$R^2 = (R - h)^2 + r^2 \implies r^2 = 2hR - h^2$$

So,
$$\frac{3}{5}\sqrt{2g}.\sqrt{h}A = -\pi(2hR - h^2).\frac{dh}{dt}$$

$$\Rightarrow \frac{2hR - h^2}{\sqrt{h}}dh = -\frac{3}{5\pi}\sqrt{2g}.A.dt$$

Integrating,
$$\int_{R}^{0} (2R\sqrt{h} - h^{3/2})dh = -\frac{3\sqrt{2}g}{5\pi} A \int_{0}^{T} dt$$

$$\Rightarrow T = \frac{-5\pi}{3A\sqrt{2g}} \left(2R \cdot \frac{\frac{3}{2}}{\frac{3}{2}} - \frac{\frac{5}{2}}{\frac{5}{2}} \right)_{R}^{0}$$

$$= \frac{5\pi}{3A\sqrt{2g}} \left(-\frac{2}{5}R^{5/2} + \frac{4R}{3}R^{3/2} \right) = \frac{5\pi}{3A\sqrt{2g}} \cdot \frac{14}{15}R^{5/2}$$

$$= \frac{5\pi}{3 \times 12 \times \sqrt{2}\sqrt{g}} \times \frac{14}{15} \times (200)^{5/2}$$

$$=\frac{7\pi}{54\times\sqrt{2}\sqrt{g}}(2)^{5/2}\times(100)^{5/2}$$

$$= \frac{7\pi}{54\sqrt{2}\sqrt{g}} \times (2)^2 \times (2)^{1/2} \times (100)^2 \times (100)^{1/2}$$

$$=\frac{14\pi}{27\sqrt{g}}(10)^5$$
 units.

18. Let X_0 be initial population of the country and Y_0 be its initial food production. Let the average consumption be aunit. Therefore, food required initially aX_0 . It is given

$$Y_p = aX_0 \left(\frac{90}{100}\right) = 0.9 aX_0$$
 ...(i)

Let X be the population of the country in year t.

Then,
$$\frac{dX}{dt}$$
 = Rate of change of population

$$=\frac{3}{100}X=0.03X$$

$$\Rightarrow \frac{dX}{X} = 0.03 dt \Rightarrow \int \frac{dX}{X} = \int 0.03 dt$$

$$\Rightarrow \log X = 0.03 t + c$$

$$\Rightarrow X = A e^{0.03t}$$
 where $A = e^{0.03t}$

$$\Rightarrow \log X = 0.03 \ t + c$$

$$\Rightarrow X = A.e^{0.03t}, \text{ where } A = e^c$$
At $t = 0$, $X = X_0$, thus $X_0 = A$

$$\therefore X = X_0 e^{0.03t}$$
Let Y be the food production in year t .

$$X = X_0 e^{0.037}$$

Then,
$$Y = Y_0 \left(1 + \frac{4}{100} \right)^t = 0.9aX_0 (1.04)^t$$

 $Y_0 = 0.9 \ aX_0$ [from Eq. (i)] Food consumption in the year t is $aX_0 \ e^{0.03t}$

Again,
$$Y - X \ge 0$$
 [given]
 $\Rightarrow 0.9 X_0 a(1.04)^t > aX_0 e^{0.03t}$

$$\Rightarrow \frac{(1.04)^t}{e^{0.03t}} > \frac{1}{0.9} = \frac{10}{9}$$

Taking log on both sides, we get

$$t[\log(1.04) - 0.03] \ge \log 10 - \log 9$$

$$\Rightarrow t \ge \frac{\log 10 - \log 9}{\log(1.04) - 0.03}$$

Thus, the least integral values of the year n, when the country becomes self-sufficient is the smallest integer

greater than or equal to $\frac{\log 10 - \log 9}{\log(1.04) - 0.03}$

Equation of normal at point (x,y) is

$$Y - y = -\frac{dx}{dy}(X - x) \qquad \dots (i)$$

Distance of perpendicular from the origin to Eq. (i)

$$= \frac{\left| y + \frac{dx}{dy} \cdot x \right|}{\sqrt{1 + \left(\frac{dx}{dy}\right)^2}}$$

Also, distance between P and X-axis is |y|.

$$\therefore \frac{\left| y + \frac{dx}{dy} \cdot x \right|}{\sqrt{1 + \left(\frac{dx}{dy}\right)^2}} = |y|$$

$$\Rightarrow y^2 + \frac{dx}{dy} \cdot x^2 + 2xy \frac{dx}{dy} = y^2 \left[1 + \left(\frac{dx}{dy} \right)^2 \right]$$

$$\Rightarrow \left(\frac{dx}{dy}\right)^2 (x^2 - y^2) + 2xy\frac{dx}{dy} = 0$$

$$\Rightarrow \frac{dx}{dy} \left[\left(\frac{dx}{dy} \right) (x^2 - y^2) + 2xy \right] = 0$$

$$\Rightarrow \frac{dx}{dy} = 0 \text{ or } \frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$$

But
$$\frac{dx}{dy} = 0$$
 $\Rightarrow x = c$, where c is a constant.

Since, curve passes through (1, 1), we get the equation of the curve as x = 1.

The equation $\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$ is a homogeneous equation.

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$v + x \frac{dv}{dx} = \frac{v^2 x^2 - x^2}{2x^2 v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{v^2 - 1}{2v} - v = \frac{v^2 - 1 - 2v^2}{2v} = -\frac{v^2 + 1}{2v}$$

$$\Rightarrow \frac{-2v}{v^2+1}dv = \frac{dx}{x}$$

$$\Rightarrow c_1 - \log(v^2 + 1) = \log|x|$$

$$\Rightarrow \log |x| (v^2 + 1) = c_1 \Rightarrow |x| \left(\frac{y^2}{x^2} + 1\right) = e^{c_1}$$

$$\Rightarrow x^2 + y^2 = \pm e^{c_1} x \text{ or } x^2 + y^2 = \pm e^c x \text{ is passing through}$$

$$(1, 1).$$

$$\therefore 1 + 1 = +e^c.1$$

$$\Rightarrow \pm e^c = 2$$

Hence, required curve is $x^2 + y^2 = 2x$.

20. Given, D.E.,
$$\frac{dy}{dx} = \sin(10x + 6y)$$

Put
$$10x + 6y = v$$

$$10 + 6 \frac{dy}{dx} = \frac{dv}{dx} \qquad \frac{dv}{dx} - 10 = 6 \sin v$$

$$\therefore 10 + 6\frac{dy}{dx} = \frac{dv}{dx} \quad \therefore \frac{dv}{dx} - 10 = 6\sin v$$

$$\Rightarrow \frac{dv}{6\sin v + 10} = dx \quad \text{or} \quad \frac{dv}{12\sin\frac{v}{2}\cos\frac{v}{2} + 10} = dx$$

On dividing numerator and denominator by $\cos^2\left(\frac{v}{2}\right)$,

Mathematics

$$\frac{\sec^2 \frac{v}{2} dx}{12 \tan \frac{v}{2} + 10 \sec^2 \frac{v}{2}} = dx$$

Now put,
$$\tan\left(\frac{v}{2}\right) = t \Rightarrow \frac{1}{2}\sec^2\frac{v}{2} = \frac{dt}{dv}$$

$$\Rightarrow 2dt = \sec^2 \frac{v}{2} \cdot dv$$

$$\therefore \frac{2dt}{12t + 10(1 + t^2)} = dx \text{ or } \frac{dt}{5t^2 + 6t + 5} = dx$$

$$\Rightarrow \frac{dt}{\left(t+\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2} = 5dx$$

$$\Rightarrow \quad \frac{5}{4} \tan^{-1} \frac{5t+3}{4} = 5x + 5c$$

$$\Rightarrow \tan^{-1}\frac{5t+3}{4} = 4x+c \qquad ...(i)$$

At origin
$$x = 0, y = 0 \implies v = 0 \implies t = \tan \frac{v}{2} = 0$$

$$\therefore \tan^{-1}\frac{3}{4} = c$$

$$\frac{1}{4} = c$$
On putting the value of c in equation (i), we get
$$\tan^{-1} \frac{5t+3}{4} - \tan^{-1} \frac{3}{4} = 4x$$

$$\Rightarrow \frac{\frac{5t+3}{4} - \frac{3}{4}}{1 + \frac{5t+3}{4} \frac{3}{4}} = \tan 4x \Rightarrow \frac{20t}{25+15t} = \tan 4x$$

$$\Rightarrow 4t = (5+3t) \tan 4x \Rightarrow t(4-3\tan 4x) = 5\tan 4x$$

$$\Rightarrow \tan \frac{v}{2} = \frac{5\tan 4x}{4 - 3\tan 4x} \Rightarrow \tan(5x + 3y) = \frac{5\tan 4x}{4 - 3\tan 4x}$$

$$\Rightarrow 5x + 3y = \tan^{-1} \left(\frac{5 \tan 4x}{4 - 3 \tan 4x} \right)$$

$$\Rightarrow y = \frac{1}{3} \left(\tan^{-1} \left(\frac{5 \tan 4x}{4 - 3 \tan 4x} \right) - 5x \right)$$

Topic-3: Linear Differential **Equation of First Order**

(c) Given that $3\int_1^x f(t)dt = xf(x)$ differentiate w.r. to x both side $3f(x) = f(x) + xf'(x) - x^2$

$$\frac{dy}{dx} - \left(\frac{2}{x}\right)y = x$$

$$[\because y = f(x)]$$

$$IF = e^{-2\ell nx} = \frac{1}{x^2} \Rightarrow y\left(\frac{1}{x^2}\right) = \int x \cdot \frac{1}{x^2} dx$$

IF =
$$e^{-2\ell nx} = \frac{1}{x^2} \Rightarrow y\left(\frac{1}{x^2}\right) = \int x \cdot \frac{1}{x^2} dx$$

 $y = x^2 \ell nx + cx^2; \therefore y(1) = \frac{1}{3} \Rightarrow c = \frac{1}{3}$

$$y = x^2 + ex^2 + ex^2$$

2. **(b)** $\frac{dy}{dx} - \frac{x}{1-x^2}y = \frac{x^4 + 2x}{\sqrt{1-x^2}}$

I.F.
$$e^{\int \frac{-x}{1-x^2} dx} = e^{\frac{+1}{2}\log(1-x^2)} = \sqrt{1-x^2}$$

Hence, solution is given by
$$y\sqrt{1-x^2} = \int \sqrt{1-x^2} \cdot \frac{x^4 + 2x}{\sqrt{1-x^2}} dx$$

$$y\sqrt{1-x^2} = \frac{x^5}{5} + x^2 + c$$

$$f(0) = 0 \Rightarrow \text{At } x = 0, y = 0 \Rightarrow c = 0$$

$$\therefore y\sqrt{1-x^2} = \frac{x^5}{5} + x^2$$

$$\Rightarrow y = f(x) = \frac{\frac{x^5}{5} + x^2}{\sqrt{1 - x^2}}, \therefore I = \int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} \frac{x^5}{\sqrt{1 - x^2}} dx$$

$$=2\int_{0}^{\frac{\sqrt{3}}{2}} \frac{x^2}{\sqrt{1-x^2}} dx \qquad \left(\because \frac{x^5}{\sqrt{1-x^2}} \text{ is odd}\right)$$

Put
$$x = \sin\theta \Rightarrow dx = \cos\theta d\theta$$

$$I = 2 \int_{0}^{\frac{\pi}{3}} \sin^2 \theta d\theta = \int_{0}^{\frac{\pi}{3}} (1 - \cos 2\theta) d\theta$$

$$=\left(\theta - \frac{\sin 2\theta}{2}\right)_0^{\frac{\pi}{3}} = \frac{\pi}{3} - \frac{\sqrt{3}}{4}$$

(16) Given differential equation is $(x^2 - 5) \frac{dy}{dx} - 2xy = -2x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{2x}{x^2 - 5}y = -2x\left(x^2 - 5\right)$$

IF =
$$e^{-\int \frac{2x}{x^2 - 5} dx} = \frac{1}{\left(x^2 - 5\right)}$$
; y. $\frac{1}{x^2 - 5} = \int -2x . dx + c$

$$\Rightarrow \frac{y}{x^2 - 5} = -x^2 + c$$

put
$$x = 2$$
, $y = 7 \Rightarrow \frac{7}{-1} = -4 + c \Rightarrow c = -3$
 $\therefore y = -(x^2 - 5)(x^2 + 3)$; Let $x^2 = t > 0$

$$y = -(t-5)(t+3) \frac{1}{-3} \frac{1}{1} \frac{5}{5}$$

$$y_{\text{max}} = 16 \text{ when } x^2 = 1$$

(0) The given equation is $\frac{dy}{dx} + g'(x)y = g(x) g'(x)$

$$I.F. = e^{\int g'(x)dx} = e^{g(x)}$$

Hence solution is $y.e^{g(x)} = \int e^{g(x)}g(x).g'(x)dx$ Put g(x) = t so that g'(x) dx = dt

$$y.e^{g(x)} = \int e^t t dt = e^t (t-1) + c$$

:
$$y.e^{g(x)} = e^{g(x)}[g(x)-1] + c$$

As
$$y(0) = 0$$
 and $g(0) = 0$, $c = 1$

$$\therefore y.e^{g(x)} = e^{g(x)}[g(x)-1]+1$$

As
$$g(2) = 0$$
, putting $x = 2$ we get $y(2) \cdot e^{g(2)} = e^{g(2)} [g(2) - 1] + 1 \Rightarrow y(2) = 0$

(c)
$$\frac{dy}{dx} + 12y = \cos\left(\frac{\pi x}{12}\right)$$

$$IF = e^{12\int dx} = e^{12x}$$

Solution is:
$$y \cdot e^{12x} = \int e^{12x} \cdot \cos\left(\frac{\pi x}{12}\right) dx + C$$

$$\Rightarrow y \cdot e^{12x} = \frac{e^{12x}}{12^2 + \left(\frac{\pi}{12}\right)^2} \left[12\cos\frac{\pi x}{12} + \frac{\pi}{12}\sin\left(\frac{\pi x}{12}\right) \right] + c$$

Put
$$x = 0$$
, $y = 0$ we get

$$C = -\frac{12}{12^2 + \left(\frac{\pi}{12}\right)^2}$$

So
$$y = \frac{1}{\lambda} \left[\underbrace{12\cos\left(\frac{\pi x}{12}\right) + \frac{\pi}{12}\sin\left(\frac{\pi x}{12}\right) - 12e^{-12x}}_{f_1(x)} \right]$$

$$\operatorname{Let} \frac{1}{\lambda} = \frac{1}{\left(\frac{\pi}{12}\right)^2 + 12^2}$$

$$\frac{dy}{dx} = \frac{1}{\lambda} \left[-\pi \sin\left(\frac{\pi x}{12}\right) + \frac{\pi^2}{12^2} \cos\frac{\pi x}{12} + 144e^{-12x} \right]$$

When x is large then $12e^{-12x}$ tends to zero.

But
$$f_2(x)$$
 varies in $\left[-\sqrt{\pi^2 + \left(\frac{\pi}{12}\right)^4}, \sqrt{\pi^2 + \left(\frac{\pi}{12}\right)^4}\right]$

Hence $\frac{dy}{dx}$ is changing its sign.

So, v(x) is non-monotonic for all real number.

Also when x is very large then again $-12e^{-12x}$ is almost zero but $f_1(x)$ is periodic, so there exist some β for

 $y = \beta$ intersect y = y(x) at infinitely many points.

6. (a, c) Integrating factor =
$$e^{\int \alpha dx} = e^{\alpha x}$$

Solution:
$$ye^{\alpha x} = \int xe^{(\alpha+\beta)x} dx$$

If
$$\alpha + \beta = 0$$
 then $ye^{\alpha x} = \frac{x^2}{2} + C$

Put
$$x = 1$$
 and $y = 1$

$$\Rightarrow C = e^{\alpha} - \frac{1}{2}$$

So,
$$ye^{\alpha x} = \frac{x^2}{2} + e^{\alpha} - \frac{1}{2}$$

$$\Rightarrow y = \frac{x^2}{2} \cdot e^{-\alpha x} + \left(e^{\alpha} - \frac{1}{2}\right) e^{-\alpha x}$$

$$y = \frac{x^2}{2}e^{-x} + \left(e - \frac{1}{2}\right)e^{-x}$$

option (a) is correct

Case II:

If $\alpha + \beta \neq 0$

$$ye^{\alpha x} = \frac{x \cdot e^{(\alpha+\beta)x}}{\alpha+\beta} - \frac{1}{\alpha+\beta} \int e^{(\alpha+\beta)x} dx$$

$$\Rightarrow ye^{\alpha x} = \frac{xe^{(\alpha+\beta)x}}{\alpha+\beta} - \frac{e^{(\alpha+\beta)x}}{(\alpha+\beta)^2} + C$$

Put x = 1 and y = 1, we get

$$c = e^{\alpha} - \frac{e^{\alpha + \beta}}{\alpha + \beta} + \frac{e^{\alpha + \beta}}{(\alpha + \beta)^2}$$

$$y = \frac{e^{\beta x}}{(\alpha + \beta)^2} ((\alpha + \beta)x - 1)$$

$$+e^{-\alpha x}\left(e^x-\frac{e^{\alpha+\beta}}{\alpha+\beta}+\frac{e^{\alpha+\beta}}{(\alpha+\beta)^2}\right)$$

For $\alpha = \beta = 1$

$$y = \frac{e^x}{4}(2x-1) + e^{-x} \left(e - \frac{e^2}{2} + \frac{e^2}{4} \right)$$

$$y = \frac{e^x}{4} \left(x - \frac{1}{2} \right) + c^{-x} \left(c - \frac{e^2}{4} \right)$$

So, option (c) is correct

7. **(b, c)**
$$f(x) = 1 - 2x + \int_0^x e^{x-t} f(t) dt$$

$$\Rightarrow f(x) = 1 - 2x + e^{x} \int_{0}^{x} e^{-t} f(t) dt$$

$$\Rightarrow$$
 $f'(x) = -2 + e^x \int_0^x e^{-t} f(t) dt + e^x [e^{-x} f(x)]$

$$\Rightarrow$$
 f'(x) = -2 + [f(x) - 1 + 2x] + f(x)

$$\Rightarrow$$
 f'(x) - 2f(x) = 2x - 3

Its a linear differential equation.

$$IF = e^{\int -2dx} = e^{-2x}$$

Solution:
$$f(x) \times e^{-2x} = \int e^{-2x} (2x - 3) dx$$

$$\Rightarrow$$
 $f(x) \times e^{-2x} = \frac{e^{-2x}}{-2} (2x - 3) - \int \frac{e^{-2x}}{-2} \times 2 dx$

$$\Rightarrow$$
 $e^{-2x}f(x) = \frac{e^{-2x}}{-2}(2x-3) + \frac{e^{-2x}}{-2} + c$

$$\Rightarrow$$
 $f(x) = -x + \frac{3}{2} + \frac{1}{-2} + ce^{2x} \Rightarrow f(x) = -x + 1 + ce^{2x}$

From definition of function, f(0) = 1 $\therefore 1 = 1 + c \Rightarrow c = 0, \therefore f(x) = 1 - x$ Clearly curve y = 1 - x, does not pass through (1, 2) but it passes through (2, -1)

∴ (a) is false and (b) is true. Also the area of the region

 $1-x \le y \le \sqrt{1-x^2}$, is shown in the figure by the shaded region,

is given by — Area ΔOAB

$$= \frac{1}{4} \times \pi \times 1^2 - \frac{1}{2} \times 1 \times 1 = \frac{\pi - 2}{4}$$

 \(\therefore\) (c) is true and (d) is false.

8. (a)
$$f'(x) = 2 - \frac{f(x)}{x} \Rightarrow f'(x) + \frac{1}{x}f(x) = 2$$

I.F. =
$$e^{\log x} = x$$
, : $f(x).x = \int 2x \, dx = x^2 + c$

$$\Rightarrow$$
 $f(x) = x + \frac{c}{x}, c \neq 0$ as $f(x) \neq 1$

(a)
$$\lim_{x \to 0^+} f'\left(\frac{1}{x}\right) = \lim_{x \to 0^+} (1 - cx^2) = 1$$

(b)
$$\lim_{x \to 0^+} xf\left(\frac{1}{x}\right) = \lim_{x \to 0^+} x\left(\frac{1}{x} + cx\right) \lim_{x \to 0^+} 1 + cx^2 = 1$$

(c)
$$\lim_{x \to 0^+} x^2 f' x = \lim_{x \to 0^+} x^2 \left(1 - \frac{c}{x^2} \right) = \lim_{x \to 0^+} x^2 - c = -c$$

(d) For $c \neq 0$, f(x) is unbounded as 0 < x < 2

$$\Rightarrow \frac{c}{2} < \frac{c}{x} < \infty \Rightarrow \frac{c}{2} < x + \frac{c}{x} < \infty$$

9. (a, d)
$$\frac{dy}{dx} - y \tan x = 2x \sec x$$
,

I.F.
$$= e^{-\int \tan x dx} = \cos x$$

 $\therefore \quad y.\cos x = \int 2x dx = x^2 + c$
Now, $y(0) = 0 \Rightarrow c = 0$, $\therefore y = x^2 \sec x$
 $\Rightarrow y' = 2x \sec x + x^2 \sec x \tan x$

Now,
$$y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{16} \times \sqrt{2} = \frac{\pi^2}{8\sqrt{2}}$$

 $y\left(\frac{\pi}{3}\right) = \frac{\pi^2}{9} \times 2 = \frac{2\pi^2}{9}$
 $y'\left(\frac{\pi}{4}\right) = \frac{2\pi}{4} \times \sqrt{2} + \frac{\pi^2}{8\sqrt{2}} \times 1 = \frac{\pi^2}{8\sqrt{2}} + \frac{\pi}{\sqrt{2}}$
 $y'\left(\frac{\pi}{3}\right) = \frac{2\pi}{3} \times 2 + \frac{2\pi^2}{9} \times \sqrt{3} = \frac{2\pi^2}{3\sqrt{3}} + \frac{4\pi}{3}$

10. (A)
$$\rightarrow$$
 p, (B) \rightarrow s, (C) \rightarrow p, (D) \rightarrow r

(A)
$$\int_0^{\pi/2} (\sin x)^{\cos x} (\cos x \cot x - \log(\sin x)^{\sin x}) dx$$
$$= \int_0^1 du \text{ where } (\sin x)^{\cos x} = u = 1$$
$$(A) \to (p)$$

Solving
$$y^2 = -\frac{1}{4}x$$
 and $y^2 = -\frac{1}{5}(x-1)$, we get

intersection points as $(-4, \pm 1)$

. Required area

$$= \int_{-1}^{1} [(1 - 5y^2) + 4y^2] dy = 2 \int_{0}^{1} (1 - y^2) dy = \frac{4}{3},$$
(B) \rightarrow (s)

(C) By inspection, the point of intersection of two curves $y = 3^{x-1} \log x$ and $y = x^x - 1$ is (1, 0)

For first curve $\frac{dy}{dx} = \frac{3^{x-1}}{x} + 3^{x-1} \log 3 \log x$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(1,0)} = 1 = m_1$$

For second curve $\frac{dy}{dx} = x^x (1 + \log x)$

$$\Rightarrow \left(\frac{dy}{dx}\right)_{(1,0)} = 1 = m_2$$

∴ $m_1 = m_2$ ⇒ Two curves touch each other ⇒ Angle between them is 0° ∴ $\cos \theta = 1$,

$$(C) \rightarrow (p)$$

(D)
$$\frac{dy}{dx} = \frac{6}{x+y} \Rightarrow \frac{dx}{dy} - \frac{1}{6}x = \frac{y}{6}$$
I.F. = $e^{-y/6}$

$$\Rightarrow \text{ Solution is } x \cdot I \cdot F \cdot = \int \left(\frac{y}{6} \cdot I \cdot F \cdot \right) dy + c$$

$$\Rightarrow xe^{-y/6} = -ye^{-y/6} - 6e^{-y/6} + c$$

$$e^{-y/6} (x+y+6) = c$$

$$\Rightarrow x+y+6 = ce^{y/6}$$

$$\Rightarrow x+y+6 = 6e^{y/6}$$

$$\Rightarrow (y(0) = 0)$$

$$\Rightarrow 12 = 6e^{y/6}$$
(using $x+y=6$)

 $\Rightarrow y = 6 \ln 2 (D) \rightarrow (r)$